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FINITE GROUP EXTENSIONS OF 
IRRATIONAL ROTATIONS 

BY 

WILLIAM A. VEECH* 

ABSTRACT 

The ergodicity of certain skew products of irrational rotations of the circle 
with finite groups is established with application to the construction of 
"well-distributed sequence generators" for finite groups. 

1. Introduct ion 

Le t  X - - - [ 0 ,  1) be the  c o m p a c t  g roup  of  real  n u m b e r s  m o d u l o  i ,  and  let 

0 = to < t~ < ... < tr = 1 be  a pa r t i t i on  of  X. G i v e n  a g roup  ]7 on r not  n e c e s s a r i l y  

d i s t i nc t  g e n e r a t o r s  3/, . . . ,  y,, we def ine  a func t ion  f :  X- ->  ]7 by  le t t ing  [ ( x )  = 7~ 

fo r  ti t=<x < t ,  1_- < j  _<-r. If 0 E X, we use  0 and  [ to def ine  a m e a s u r a b l e  

t r a n s f o r m a t i o n  T:  X × ]7--, X x ]7, 

( I . I )  T ( x , y )  = (x + O,f(x)y) .  

To a v o i d  no ta t iona l  c o m p l e x i t y  we have  s u p p r e s s e d  the d e p e n d e n c e  of  T on 0 

and  [. Th i s  will g e n e r a l l y  be  c l ea r  f r o m  the  c o n t e x t .  F ina l l y ,  if ]7 is finite, d e n o t e  

the  n o r m a l i z e d  H a a r  m e a s u r e  on X x ]7 by  ~.  

THEOREM 1.2. Assume  

(a) F is a finite group on generators y,, ..., yr 

(b) tt, "", tr-j are rational 

(c) 0 is irrational and has bounded partial quotients in its continued fraction 

expansion. 

Then ( T, X × ]7,/~) is ergodic. 

Recal l  tha t  T is e rgod ic  if w h e n e v e r  A C X × ]7 is m e a s u r a b l e  and  T - ' A  = A,  

t hen  ~ ( A ) = 0 o r  1. 
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Define f~"~: X---~F, n E Z, by 

f ( x  + (n - 1 )O) f (x  + ( n  - 2 )O) . . . f ( x )  

f~"'(x) = e (  = identity) 

f - ' ( x  + nO) f - ' ( x  + ( n  + l )0) . . . f  '(x - 0) 
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(n > 0) 

(n = 0) 

(n < 0). 

The powers  of T are computed  to be T " ( x , y ) = ( x  +nO, f ' " ' ( x ) y ) .  The next 

result says that with the hypotheses  of Theorem 1.2, the sequence f~"~(x), 

n E Z, is "well dis tr ibuted" in F for every  x E X. Below ~A denotes  charac-  

teristic funct ion and 1. I cardinality. 

THEOREM i .3 .  

x @ X ,  then 

(1.4) 

uni formly  in k. 

Le t  the a s s u m p t i o n s  be as in Theorem 1.2. I f  A C F and 

lim 1 N ~  N ~A(f("+k)(X)) = I a l  .= ,  I r l  

The following result will be a simple corollary to Theorems  1.2 and 1.3. 

THEOREM 1.5. With  nota t ions  and a s s u m p t i o n s  as in Theorems  1.2 and 1.3, 

define n(x) ,  x ~ X ,  to be the least integer n >-_ l such that  f~"~(x) = e. Then 

i 
I 

(I.6) n ( x ) d x  = ]r]. 
) 

In the next theorem notice that the hypotheses  on 0 and t , , . . . , t r  . are less 

restrictive. 

THEOREM 1.7. Let  0 be irrational, and  a s s u m e  t~ - t~ f~ Z0, 0_-< i < j < r. / f  F 

is finite, there exis ts  an integer L such that  f o r  any  x the sequence  f~°~(x ), 

l <-_ n <- L,  conta ins  every e lement  o f  F. 

REMARK. The hypotheses  of Theorem 1.7 are too weak for  the conclusion of 

Theorem 1.2. For example ,  if F = {_+ 1}, r = 2, 3'. = 1, y2 = - !, and if 0 has 

unbounded partial quotients,  there exist uncountably many  t such that if t, = t, 

then (a) T fails to be ergodic, and (b) (1.4) fails to exist for  A --{1} and an 

uncountable  number  of x. (See [6].) However ,  there is no such " b a d "  value of t 

which is rational, and there remains the possibility that Theorem 1.2 is true for  

all irrational 0. It also may be that Theorem i.2 is true for  0 having bounded 

partial quotients under  the assumpt ion t , -  t j~  Z0, i F  j. This is the case for  

r = 2 :  
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THEOREM 1.8. With notations as in Theorem 1.2 assume 

(a) 0 has bounded partial quotients 

(b) r = 2  and t~ f fZO.  

Then ( T , X  x F,p.)  is ergodic. 

The conclusion of Theorem 1.3 is also true with the hypotheses  of Theorem 

1.8. The case r > 2 of Theorem 1.8, if true, may be rather  complicated unless a 

proof  along different lines f rom ours in the case r = 2 is found. 

2. A criterion for ergodicity 

Let  K be a compac t  metrizable topological group, and let 3,,, ..., yr E K be 

e lements  which generate  a dense subgroup,  F. Fix a partition 0 = to < t~ < ... < 

tr = 1 of X, and use it as in Section 1 to define f :  X-->FC_K. If 0 E X  is 

irrational we set up T: X x K --->X × K as T ( x , k )  = (x + O,f(x)k) .  T preserves  

Haar  measure  on X × K, and it makes  sense to ask if T is ergodic. That  it is not 

a lways so even with hypotheses  (b) and (c) of Theorem 1.2, is shown by the 

example  X = K, y~ . . . . .  ~'r = 0 (consider K as an additive group here). For  

then T(x, k) = (x + 0, k + 0), and, for  example,  the set {(x, k ) I x - k ~ (0, ½)} is a 

proper  invariant  set. Later  in the section we will raise a question, an atfirmative 

answer  to which would imply that this is in a sense the only counterexample .  

Let  A be a complete  set of cont inuous irreducible unitary representat ions of  

K. To each integrable function F on X x K and ~ - ~ A  we associate  an 

opera tor  valued function F~ on X, 

(2.1) F~(x) = fK F ( x , k  )'n'(k )dk, 

where dk is Haar  measure  on K. We note that if F~ = 0 a.e. for  every nontrivial 

7r E A, then for  a lmost  all x, F(x , .  ) is constant.  For  since A is countable it 

would be true for  a lmost  all x that F~(x) = 0, all nontrivial 7r E A. For  such x, 

F~(x,.  ) is constant  by the Peter-Weyl  theorem. 

If  F is an invariant integrable function, F(T(x ,  k ) )=  F(x,  k) a.e., then the 

definition of T and the fact  7r is a representat ion imply that F~ satisfies the 

equation 

(2.2) F,,(x + O) : 7r(f(x))F~(x).  

By the observat ion made in the preceding paragraph,  if we are able to prove  

(2.2) has only the trivial solution F ,  = 0  for  nontrivial 7r, then F will be 

constant .  Now in order  to prove  F ,  = 0, we claim it is enough to prove  F ,  is 
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essentially constant.  For if F= = v a.e., then (2.2) implies 7r(y~)v = v, 1 -<j _<- r. 

Since F is dense in K, rr (k )v  = v, k E K .  That  v = 0  is a consequence  of the 

assumed nontriviality and irreducibility of 7r. 

The next two sections are devoted to proving cons tancy of solutions to 

equations like (2.2) under the hypotheses  of Theorems  1.2 and 1.8 (where F is 

finite and F = K).  In what follows we shall describe an equation related to (2.2), 

whose solutions may well be constant  under suitable hypotheses .  If this is the 

case, then all solutions to (2.2) can be described. 

Assume F~ is a solution to (2.2). For  each x E X define a closed subgroup 

L (x) C_ K by L (x) = {k E K l -n-(k )F= (x) = F= (x)}. Using (2.2) we find 

(2.3) L ( x  + O) = f ( x ) L ( x ) f ( x ) - ' .  

L ( . )  is measurable  f rom X to the space of closed subsets  of K with the 

Hausdorff  topology, as it is not difficult to see. 

QUESTION 2.4. Under  the hypotheses  of  (say) Theorem 1.2, is every  

measurable  solution to (2.3) essentially constant?  

Suppose L ( . )  is a constant  solution to (2.3), say L ( - ) =  L a.e. Then 

y j L y j  ~ -- L, 1 <= j =< r, and it follows that L is normal in K. In this situation it can 

be shown with the hypotheses  of Theorem 1.2 that ~/i77 ~ ~ L, all i,j. 

Let  Y( be the Hilbert  space of the representat ion ~-, and let V be the linear 

span of the essential range of F ,  in the space of linear opera tors  on Y(. By the 

last paragraph 7r(yl)= 7r(7j) on V for all i and j. In particular,  V is ~ ' (K)  

invariant. Now if h E Y(, Vh is a 7r(K) invariant subspace  of ~ .  By the 

irreducibility of ~', Vh = {0} or Vh = Yr. If it is a lways the first case, then 

V ={0}, and F= = 0  a.e. If Vh = Y( for some h, then 7r(y~)= rr(yj), all i,j, and 

r r (K)  is abelian. Thus d i m ( ~ ) =  1. Identify Y( which C, and let r r (y0  = 

~" E C(lsr ] = 1). F,~ is now complex valued, and (2.2) becomes  

(2.2') F . ( x  + O) = ~F . ( x ) .  

Therefore  r = exp(27rinO) for some n. Define S,, S,:  X × X - - - ~ X  x X, by 

S,  (x, y)  = (x + O, y + nO), and let arg z, I z I = 1, be the value of the argument  in 

[0,2~-). The map ~r: X x K - -*X x X defined by ~ ( x , k )  = ( x , ( l / 2 7 r ) a r g r r ( k ) )  

satisfies o-T(x, k )  = S,o-(x, k) .  Thus,  (S,, X x X)  is a " f ac to r "  of (7, X × K).  It 

is in this sense that an affirmative answer  to 2.4 implies that the counterexample  

at the beginning of this section is the "on ly"  counterexample .  
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REMARK. If the answer to 2.4 is "yes" ,  and if y,~,~', 1 <-_ i, ] <_- r, is also a set 

of generators for  F, or at least for  a dense subgroup of K, then L = K, and 

F= = 0  a.e. 

REMARK. If the answer to 2.4 is "yes"  for  metrizable K, it can be shown for 

arbitrary compact  K that if hypotheses (b) and (c) of Theorem 1.2 are true, and 

if y j , ' " , , / r  generate a dense subgroup of K, then /~"'(x), n ~ Z ,  is well 

distributed in K for all x E X. (This means (1.4) holds, with the right side 

replaced by the normalized Haar  measure of A whenever  A is an open set 

whose topological boundary has Haar measure 03 

3. Proof of Theorem 1.2 

Let (M, d) be a separable metric space. A measurable function g :X --> M will 

be said to be integrable if for  some m • M (and hence all m E M) the real 

valued function d(g(x) ,  m)  is Lebesgue integrable. Below I will be a generic 

letter for  an interval, and I" I will be Lebesgue measure on X. If g is integrable, 

then for almost all x E X 

(3.1) lim 1 fx i,l~o ~ d ( g ( x ) , g ( y ) ) d y  = O. 

Indeed, let {ran } be a dense sequence in M, and let X '  be the intersection of the 

Lebesgue sets of the functions d ( g ( x ) , m , ) ,  n = 1,2,-.. .  Then [X'[ = 1, and if 

x E X ' ,  (3.1) holds. We omit the simple argument. 

LEMMA 3.2. Let g : X ~ M be integrable, and let e, a > O. There exists 8 > 0 

with the [ollowing property: I[ ~ = {I} is a collection o f  intervals with 

(a) I U 1 ~ I  I > a and (b) I I I <8,  I E ~,  then for some I ~ ~ and m E M 

'f, (3.3) ii-~ d ( m , g ( y ) ) d y  < e. 

PROOF. Fix e > 0, and let X~, 8 > 0, be the set of x E X such that if x ~ ! 

and I I } <  8, then 

ti--~ d ( g ( x ) , g ( y ) ) d y  < e. 

Since l i m ~ . l X ~ l =  1, there exists 8 > 0  with I X ~ [ > i - a .  Assumption (a) 

implies there exists I E ~¢ such that ! N X~ / ~ .  Choose any x E I N X~, and let 

m = g(x) .  Then (3.3) is true for I and m. 
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Fix an i rrat ional  n u m b e r  0 C X, and let 0 = to < t, < ... < tr = 1 be  a par t i t ion  

of  X such that  t i - t j f f .  ZO, i / j .  Let  F be  a g roup  on gene ra to r s  % , . . . , % ,  and 

define f :  X ~ F as usual .  We  will a s s u m e  now that  F ac ts  on M by  isometries .  If 

3' ~ F, m ~ M,  y m  deno te s  the image  of  m under  y. W e  will be  in te res ted  in 

m e a s u r a b l e  func t ions  g:  X ~ M which  sa t i s fy  the equa t ion  

(3.4) g(x  + O) = f ( x ) g ( x ) .  

Special  ca ses  of  (3.4) are (2.2) and (2.3). If  we a s s u m e  F has  a fixed point  m in 

M, as is t rue  in the cases  of  interest ,  then  g is au toma t i ca l ly  in tegrable .  Indeed ,  

oh(x) = d ( m , g ( x ) )  satisfies 4,(x + 0) = 4~(x) a.e. by  (2.2) and the F- invar iance  

of  d. Thus ,  4' is cons tan t .  

If  we succes s ive ly  rep lace  x by  x + 0, x + 20, etc.  in (3.4), we find 

(3.4') g (x + nO) = f~"'(x )g (x)  

(which is in f ac t  valid fo r  all n E Z). Recall  that  f~°~(x)= e, and f ~ " ' ( x ) =  

f ( x  + ( n  - 1)0) f ( x  + ( n  - 2 ) 0 ) . . . f ( x ) ,  n > 0 .  

Fo r  each  n _->0 define a par t i t ion P, of  X by  P o = Q  and P, = 

{ t i  - jO 10 =< ] < n, 0 -<_ i < r}. Po con ta ins  the d iscont inui t ies  of  f~"', and we no te  

in par t i cu la r  that  t, - nO ff  P,, 0 <- i < r. Order  the poin ts  of  P,  as 0 = s ~, < s 7 < 

• . . < s T , _ ~ <  1. We  say  s7 is of  type  i, O<-_i<r,  if s7 = t i - i O  fo r  s o m e  I. 

LEMMA 3.5. With nota t ions  as above  suppose  e , a , b , c  > o ; there exis ts  

N < ~ such that  the fo l lowing s ta temen t  is t r u e [ o r a l l  n >= N a n d  0 <= i < r: I [P ,  

conta ins  at least an points  s7 o f  type i such  that  

(3.6) b<[s7-s71 <c ( / = j + l  or j - l )  
/1 n 

(let s_", = s ; ,_ , ) ,  there exists  v? E M such that  

(3.7) -~1 d(vT,  g ( y ) ) d y  < e  J =  t i - b , t ~  + . 

PROOF. C h o o s e  8 > 0  in L e m m a  3.2 fo r  a = a b  and e ' = ( b / c ) e .  Le t  

N > 2c /6 ,  and s u p p o s e  n _-> N is such that  P,  con ta ins  at leas t  an points  of  type  

i such  tha t  (3.6) is t rue.  L e t  ~¢ be the c o r r e s p o n d i n g  set  of  in terva ls  (sT i, sT+,). 
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The intervals in ~¢ may not be pairwise disjoint, but their union has measure at 

least an • b/n = ab. Each I (E 5~ has III < 2c/n < 8. Therefore, there exists 

I ~.¢,  v E M such that (3.3) holds (for e'). I has the form (sT-,,sT+,) = I with 

s7 = t, - lO. By (3.6) I contains the interval L = (sT - b /n, s 7 + b /n ). Note that 
n ( ,~) n L + lO = J, and f " '  is constant on L. Letting v~ = [ (s~)v, (3.4'), the group 

invariance of d, and (3.3) imply 

1__ fl d(vT, g(y))dy fJf 

1 
- I L l  fL d (v ,g (y ) )dy  

= b II~ d (v ,g (y ) )dy  

C ! 

The lemma is proved. 

LEMMA 3.8. Assume d(m, m')  = 1, m / m' ,  and otherwise let assumptions 

be as above. Given A < ~ suppose {nk } is an increasing sequence of integers 

such that nk+, <-_ Ank for all k. Suppose there exists i, 0 <- i < r, and a, b, c > 0  

such that for each k, P,, contains at least ank points of type i such that (3.6) is 

true. There exists v E M such that 

(3.9) lim 1 fl m-o -~ d(v ,g (y ) )dy  = O. 

PROOF. By Lemma 3.5 there exists a sequence v~ = v7 ~ E M such that if 

Jk = (t, - b/m,  ti + b/nk) 

(3.10) lim 1 IJ d(v ,,g(y))dy =0. 

We estimate d(v~, v~ ÷') using the inequality IJk I_- < ,~ IJk÷, I: 

=lJk÷,I ~+, {d(v~'g(Y))+d(g(Y) 'V~÷l)dY 

< )t d(v~,g(y))dy  + ~  d(g(y),v~+l)dy. 
=lJkl . . . .  
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It fo l lows  f r o m  (3.10) that  l imk~d(v~,v~+')=O. By our  a s s u m p t i o n  on d, 
k k + l  v ~ = v i fo r  all large k. Le t  v be  this c o m m o n  value.  We  will p r o v e  (3.9) holds.  

It  is enough  by  s y m m e t r y  to p r o v e  

(3.11) l im 1 f,,+0 d(v,g(y))dy = O. 
,~ ~ 0  - ~  d ti 
B > O  

T o  this end ,  fix /3 > 0  and  choose  nk such that  b/nk+, </3 <= b/nk. Then  

1 ( ' ,+°  < 2A fj 
~ j , ,  d(v,g(y))dy = - ~  ] ~ d(v,g(y))dy 

and the r ight -hand side tends  to 0 as k = k (/3) tends  to ~. T h e  l e m m a  is p roved .  

LEMMA 3.12. Assume d(m,m' )  = 1, m ~  m'. Suppose A <oo and {nk} is an 

increasing sequence of  integers such that nk+, < Ank for all k. If  there exist 

b,c >0 such that for all k every point s )  of  P,k satisfies (3.6), then any 
measurable solution to (3.4) is essentially constant. 

PROOF. By L e m m a  3.8 there  exis ts  fo r  each  i, 0 N i < r, an e l emen t  v, E M 

such tha t  (3.9) holds  with v = v,. Fix e > 0 (to be  specif ied later) and let 6 > 0 be  

such  that  if 0_-_N i < r, and if t, E I and I I I  < 6, then  

'f, ii~ [ d(v,,g(y))dy < e. 

A s s u m e  k so large that  nk > 2 c / &  For  any  ], 0 < ] <-rnk - 1 wri te  s7 k= t i - lO  
n k n fo r  some  i and I. Define wj = / " ' ( t ,  - lO) 'vi. L e t  It be  the in terval  (sj_~, sjg,). I f  

J = I~ + lO, then  b e c a u s e  f " '  is cons t an t  on Ij, and b e c a u s e  [JI  < 2c/nk < & 

(3.13) 

1 
IIj] fl, d(w,g(y))dy 

1 =0-] I~ d(vi, g(y))dy 

~ . .  
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Now we est imate d(wj, wj+0, using the fact  that 

<2c n n 

(3.14) 

I fl d(w~, wi+,)dy d(wj, w~+,) - [I~ A I~+, I ,~,,., 

' f,, < 2 c  1 d(w, ,y)dy +~,+,~ 
= b , ., 

d(y, wj+~)dy} 

4c 

N o w  take • <b/4c .  We have  d(wj, wj+O< 1 for all j, and therefore  w~ = w2 = 

• ... Denote  the com m on  value by w. By (3.13) {y I d (w, g (y)) >_- e ~/2} has measure  

at most  2e 1/2. Lett ing e--~ 0 we see that g is essentially constant.  

PROOF OF THEOREM 1.2. Assume now that 0 has bounded partial quotients.  

This means  there is a constant  /3 > 0  such that HnOl[>/3/n for  n = 1,2, . . . ,  

where  I1" II is distance to nearest  integer. If t -- p/q  is rational, and if lit - lO II < 
1/q, then it is easy to check that Ht-lOH = 1]q .[IqlOH>[3/q~l. From this it 

fol lows that if tl, -" ,  tr-t are rational, then every  interval in the partition P, has 

length at least b/n for  some number  b > 0. (Let Q be a c o m m o n  denominator  

for  tl, . " ,  L-~. Then b = /3 /Q2 will work.) It is a consequence  of L e m m a  4.1 and 

the fact  0 has bounded partial quotients that there exists c such that the 

partition { -  ]010 _-< j < n } has every  interval of length at most  c/n. Therefore  

the same is true of P,. 

We are now assuming that F is finite, and so we may take K = F in Section 2. 

Le t  Y( be the Hilbert  space of ~r and let ~7 be the linear operators  on ~ .  K acts 

on ~ through 7r, and the orbit  space Le/~r is metrizable.  Define ~ (x )  ~ 5~/~r by 

6(x)  = 7r(K)F~(x). G( . )  is measurable ,  and t~(x + 0) = 6 (x )  a.e. Therefore  

(?(x) is constant ,  say G ( x ) =  G a.e. G has the form 6 = l r (K)v and we let 

M -- 6. M is a finite set, and since F= is essentially a function f rom X to M, 

g(x) = F=(x) is a solution to (3.4). Placing the discrete metric on M, L e m m a  

3.12 applies and g is essentially constant .  Theorem 1.2 is proved.  

4.  P r o o f  o f  T h e o r e m  1.8  

The proofs  of Theorems  1.2 and 1.8 are similar in spirit, but for  the latter it is 

necessary  to look more carefully at the partit ions P,. 
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Recal l  tha t  if 0 is an i r ra t ional  real n u m b e r  with con t inued  f r ac t ion  e x p a n s i o n  

0 = [a0; a~,- . . ]  and  c o n v e r g e n t s  {p. /q.} ,  then  q.+, = a.+,q. + q. ,. 

Below,  when  we say x E X is to the  right (resp.  left) of  0, we shall m e a n  

x E (0,½) (resp.  x E (I, 1)). T h e n  x is to the right (left) of  y if x - y is to the right 

(left) of  0. 

T h e  nex t  i e m m a  is p r o b a b l y  well  known ,  but  we  k n o w  of  no r e f e r e n c e  fo r  it. 

LEMMA 4.1. Let  0 = [a0, a , , - " ]  and {pn/q.} be as above. Given a positive 

integer N define n and a, 0 <= a < a.+,, by q. < N <= q.+, and q._, + otq. < N <= 

q._, + (a  + 1)q.. I f  q.O is to the right (left) of  O, and if 0 <= l < N, then among the 

numbers jO, 0 <_ j < N, j ~ I, the one which is closest to lO on its right (left) is the 

one with j given by 

j = I +q .  (0~=1 < N - q . )  

(4.2) j = l - ( q . ,  + (¢¢ - 1)q.)  ( N - q . ~ l K q . _ , + , ~ q . )  

j = l - ( q .  ,+o~q.) (q,, l + o t q . < - - l < N ) .  

PROOF. Since 0 =< l, j < N -< q. +l, if I J j [I (l - j ) 0  II --> 11 q.0 II, and equal i ty  can  

hold only  if l - j = ___ q.. T h e r e f o r e ,  if 0 -_ l < N - q., j = l + q., as c la imed  in 

the  first line of  (4.2). 

F o r  any  in teger  m the  n u m b e r s  (q,. , + [3q,.)O, 0 <= [3 < a,.+,, are [[q.o [I dense  

on the shor t  in terval  b e t w e e n  0 and q,._,O. If  jO lies in this in terval ,  then  fo r  

s o m e  /3, ][(j--(qm-,+[3qm))Oll<llq~O[[. If  0__--<j<qm+,, then  necessa r i ly  j = 

qm-, + fl~q,.. 
A s s u m e  q.O is to  the  right of  0. A similar  a r g u m e n t  w o r k s  fo r  the  left .  If  

N - q. -< I < N, and  if I < j < N is such that  j0 is a d i s t ance  less than  II q--20 rl 

f r o m  lO on its right,  then  by  the p reced ing  p a r a g r a p h  j -  l = q . - 2 +  [3q.-,. I f  

[3 < a .  - 1, then  ]l(J - 1)0 1[ > II q°o II + rl q . - , o  II- W h i c h e v e r  of  the second  two  

inequal i t ies  in (4.2) l satisfies,  the va lue  of  j a s soc i a t ed  to I satisfies II q - l)O [r <- 

11q.0 II + IIq.-,o II, with ]0 on the  right o f  tO and s t r ic t  inequal i ty  unless  a = 0 and 

N - q . - < l  < q._,. W e  conc lude  that  if N - q . - < l  < ]  < N, and  if ]0 is the 

nea re s t  ne ighbor  to lO on the right,  then  o ~ = 0  and j = l - ( q . _ , - q , , )  

( =  l + q . - 2 +  (a.  - l ) q . - 0 .  

I f  0_--<j < l < N,  and  if i0 is a d i s tance  at  mos t  [Iq. ,0 II f r o m  10 on its right,  

then  by  the  p a r a g r a p h  p reced ing  the last,  j = l - ( q .  , + [3q.). M o r e o v e r ,  the  

smal les t  poss ib le  d i s tance  is a t ta ined  using the m a x i m u m  [3 such that  l -  

(q._, + [3q.) _-> 0. In the in terval  N - q. ~ l < N, this va lue  is [3 = o~ or  a - 1 

acco rd ing  to (4.2), a s suming  a -> 1 in the a - 1 case .  T h e  remain ing  case  is 
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o~ = 0 ,  N - q ,  <-1 <q ,_ , .  Here  there is no value ], 0=<j <1, such that 

N(J - t)0 I] <= Ilq,-, 0 II. If 0 -< j < N, if jO is on the right of I0, and if I1(I - 1)0 II < 
2llq.-,0 II. then [[(j - l ) O  - ( l - ( q .  ,-q.)-l)ol[<llq. ,011. Since 

[ j - l + q . _ , - q . [ < q .  if ]=>0 and 0_-<l <q ._ , ,  j = l - ( q .  , -q , , ) .  This com- 

pletes the proof of the lemma. 

REUARK. Assume 0 has bounded partial quotients. Let  ll /0 II => c/ l , l  >= 1.The 

largest possible value which can occur  in (4.2) is 

2 < 2  1 < 2  1 
I[ I l l l  II II H " q " O " + " q " - ' O " < 2 " q " - ' O " < q .  c q.+, c N" 

(If Ill0 II--> c/l, l _-> l, then c /q .  <= [Iq.O [I < llq.+, implies l /q.  < l [ c .  1/q.+,.)This 

fact  was needed in the proof  of Theorem 1.2. 

In what follows we assume 0 has bounded partial quotients. Thus, there 

exists c > 0 such that IIqO II >= c /q  for  all q -> 1. Fix t E X such that t f f  Z0, set 

r = 2, and define to = 0, t, = t, t2 = 1. Let  F be a group on generators y, ,y2,  

define [:  X - -* F  as usual, and assume (M,d)  is a separable metric space on 

which F acts by isometries. Finally, fix a measurable function g: X--* M such 

that 

(4.3) g(x + O) = f (x )g(x) .  

We will prove g is essentially constant  if d ( m , m ' ) =  1, m ¢  m' ,  and as in 

Section 3, Theorem 1.8 follows. 

Define N.  = q. + q._,. Since q.+, <--_ 1/c • q. (c /q.  <-Hq.O [I < 1/q.+,), N.+, <_- 

1/c • N.. Suppose for some 6 > 0 and all n every interval of the partition PN. 

(Section 3) has length at least 6llq.O II > c6[q. > c6[N..  Then by Lemma 3.12, g 

is essentially constant.  Therefore ,  we will assume in what follows that no such 

6 exists. 

Let  e,=minlq<N.][t+sOH. The smallest interval in PN. has length 

min(e. , l lq,  OII) by Lemma 4.1. Therefore ,  if the smallest length is less than 

611q, O I[, 6 < 1, it must be e,. 

Given 6, 0 < 6 < 1, let no be the least integer such that PN.o has an interval of 

length less than 611q,,O I[. Note  that no = no(6)---> ~ as 6 ---> 0. Let  s, Is I<  N,o, be 

such that e.~ = I[ t + sO [I.We treat the case s = 0, the case s < 0 being similar. By 

our  choice of no, s must satisfy the inequality N,o-, --< s < N.o, or more simply, 

q.o-, < s < q-o+,- Let  n = no + 5. If 6 is sufficiently small, every  interval in PN. 

has length at least H sO + t []. For  if [I s'O + t ll--< II sO - t [I, then II (s - s')O I[-<- 

2611q._,oll<=26(l/c)71lq.+2o[l. Since Is'l<q.+q.-,<-_q,,+,, IIs-s'l<q,,+2. If 

6<~c7 ,  then s = s ' .  
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We fix n as in the previous paragraph (assuming ~ <½c7). Note  that s 

satisfies the inequality qn-6 "( S ' (  qn-4. 

Now q,O is either to the right or to the left of 0. Considerat ions of symmet ry  

make it sufficient to treat  the fo rmer  case. Thus,  we assume below q,O is to the 

right of 0. 

Fix u, 0 -< u < q, ~. We wish to list a string of success ive  elements  - lO f rom 

left to right, l < N,,  beginning with - (u + q,)O and ending with the first point 

- vO to the right of - uO such that 0 =< v < q,_,. To do this we apply L e m m a  

4.1, noting that when No = q. + q.- , ,  a = 0 in (4.2), and only the al ternatives 

(l + q.)O, (l - q. i)0 are possible there. Of course,  since we are working with 

negative numbers ,  the successors  to - l O  on the right have  possible forms 

- (l - q.)0, - (l + q. 1)0. The lists (A) and (B) correspond to 0 =< u < q. 2 and 

q,-2 <---- u < q,-1 respectively.  We delete 0 f rom - jO : 

(A) - ( u + q . ) , - u , - ( u + q .  1 ) , . . . , - ( u + ( a . + l ) q . - , ) ,  

- ( u  + ( a .  + l ) q . - i -  q . )  

(B) - ( u + q . ) , - u , - ( u + q .  O , . . . , - ( u + a ° q . - i ) , - ( u + a . q . - i - q . ) .  

LEMMA 4.3. Let  0 <= u < q._l, and let I be the short interval between the first 

and last points of  whichever of  strings (A) and (B) applies to u. I[ ~ > 0 is 

su1~iciently small, then f(P~ is constant on L where p is given by 

i. p = u - s i f O < = u - s < q , - 2  

ii. p = u - s + a , q , _ ~ - q ,  i f q ,  z ~ - ~ t t - - s < q ,  I 

iii. p = u i[ u < s. 

The proof  of the l emma will be given at the end of this section. If  I is in class 

(A), meaning 0 <_- u < q,_2, then only i and iii above  are possible. For  class (B) it 

is only i and ii, because  u => q,-2 > q , - , >  s implies iii is impossible.  The 

possibilities (A-i), (B-i), etc., will be referred to as the type of L 

Let  u, / ,  and p be as in L e m m a  4.3. Then - u + p does not depend upon u. 

Since I is determined by (A) or (B), the interval I + pO depends only upon the 

type of L This is significant because,  as we shall see, there is a constant  a > 0 

such that for  each of the four  possible types the totality of intervals of that type 

has measure  at least o~. Assume this to be so for  the moment .  Given e > 0, 6 > 0 

can be chosen so that n = n(~)  is large as we please. Therefore ,  by L e m m a  3.2 

if 6 is small, there will exist for  any type some interval I of that type such that  

(3.3) holds; that is, for  some m ~ M 
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1 
f~ d ( m , g ( y ) ) d y  < e. (4.4) ii-- ~ 

Let  J = l + pO, m '  = f l " ( x ) m  for  any x E L Then by (3.4), (4.4), and the group 

invariance of d 

'f, (4.5) ij----~ d ( m ' , g ( y ) ) d y  < e. 

Now if I '  is any other interval of the type of I, and if p '  is associated to I ' ,  

define m " =  f(P')(x)-lm ', for  any x ~ I ' .  Then (4.5) and (3.4) imply 

'L i i ,  I . d ( m " , g ( y ) ) d y  < e .  

In other  words,  g is nearly constant ,  in the sense of  (3.3), on every  interval of  

every  type if 6 is sufficiently small. 

Le t  I, I '  be successive intervals (of possibly different types).  Then I • I '  is 

an interval of  length IIq,,O II. Since I and I '  have lengths bounded by 

2][q.0 II + (a, + 1)llq.-,0 II = Ilq.o I[ + Itq. ,0 l[ + [Iq.-=o II 

< ( 1 + 1 +  1~ 
= c - J !  Ilq.o It, 

an argument  as in (3.14) shows that if m , m '  are associated to I and I '  as in 

(4.4), then d ( m , m ' ) < = 2 ( l + c  ' + c  2)e. If  e is small, and if d ( m , m ' ) =  1, 

m ~ m ' ,  it follows that every  interval of every  type has the same constant  

associated to it. Lett ing e--->0, we see that g is essentially constant.  

Let  us now est imate  the occurrences  of  types (A-i), (B-i), etc. 

Type  (A-i) occurs  when u satisfies the inequalities 0---u < q,-2 and 0-< 

u - s < q,_2. Since s < q,_4, there are at least q. 2 - q. 4 ->- q.-3 such u. Every  

interval of  every  type contains at least one segment  of length IIq,-,o II which 

intersects no other interval (A) or (B). Therefore  the totality of intervals of type 

(A-i) measures  at least q.-311q.-,ll > c3. 

Type  (B-i)  occurs  when u satisfies q.-2 =< u < q,_, and 0 =< u - s < q, 2. Since 

s > q,-6, there are at least q,-6 such u. The type (B-i) intervals have total 

measure  at least q,-6llq, ,0 1[ > c 6 

Type  (B-ii) occurs  when q,-2--< u < q, ~ and u - s  => q.-2. Since q.-2 + s < 

qn-2 "~ qn 4 < qn--3, this happens at least q, , - q._3 => q,-2 times. A lower bound 

for  the total measure  of intervals of this type is q._.llq._,oll>= c 2. 
Finally, type (A-iii) occurs  when 0 -< u < q,_2 and u < s. Since s > q,_6, there 

are at least q,_~ such u. The total measure  in this case is greater  than c 6. 
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T h e  p r o o f  of  T h e o r e m  1.8 is c o m p l e t e ,  e x c e p t  fo r  the  p r o o f  of  L e m m a  4.3. 

PROOF OF LEMMA 4.3. F i x  0 --< u < q, ,, and  let  I be  the  in te rva l  c o r r e s p o n d -  

ing to  the  s t r ing ,  (A) or  (B), a s s o c i a t e d  to  u. W e  will  c o m p u t e  t he  p o s s i b l e  

va lue s  of  j such  tha t  t - jO ~ I. Then ,  l e t t ing  p be  the  s m a l l e s t  in teger  such  tha t  

- pO @ I or  t - p O E  I, the  f u n c t i o n  f~P~ has  no d i s c on t i nu i t i e s  on  I. T h e  l e m m a  

will  be  a c o n s e q u e n c e  t h e r e f o r e  of  ou r  exp l i c i t  c o m p u t a t i o n .  

L e t  - lO, - l 'O be  s u c c e s s i v e  e l e m e n t s  of  I. W e  will e x a m i n e  the  poss ib i l i t i e s  

fo r  p o i n t s  t - j 0  b e t w e e n  the  two .  

I f  l, l '  -> s, then  one  of  the  po in t s  t - (l - s)O, t - ( l '  - s)O will be  b e t w e e n  the  

two  ( r e m e m b e r  tha t  I]s0 + tll < ;~ II q,O II, and  II q ,o  II is the  length  o f  the  s h o r t e s t  of  

the  s e g m e n t s  c o m p r i s i n g  I ) .  O b v i o u s l y ,  t - (l - s )0 ,  t - ( l '  - s ) 0  are  s u c c e s s i v e  

e l e m e n t s  in the  pa r t i t i on  { t - j 0 } .  ( F o r  t - j O  to lie b e t w e e n  the  two  it is 

n e c e s s a r y ,  by  L e m m a  4.1, tha t  e i the r  j = l - s - q, ,  in wh ich  c a s e  l > q,  and  

I '  = l - q,,  m e a n i n g  j = l '  - s ; o r  tha t  l '  - s = j - q,,  m e a n i n g  tha t  l '  < q,-1 + s 

and  h e n c e  l '  = l + q._j is i m p o s s i b l e .  Thus ,  l '  = l - q, ,  and  j = l '  - s + q° = l - 

s ). Thus ,  if t - j0 is to  be  a s e c o n d  po in t  of  its k ind  b e t w e e n  - lO and  - l '  O, it is 

n e c e s s a r y  tha t  it be  b e t w e e n  - l O  and  t - ( l - s ) O  or  b e t w e e n  - l ' O  and  

t - ( l '  - s)0.  In  e i the r  ca se ,  e.  < II sO + t II, c o n t r a d i c t i n g  the  def in i t ion  o f  s. 

N o w  c o n s i d e r  the  ca se  l '  < s. S ince  s < q,  ,, l = l '  + q, .  If  ~ is suff ic ient ly  

smal l ,  the  on ly  pos s ib i l i t y  for  j such  tha t  t - j O  is b e t w e e n  - l O  and  - l ' O  is 

j = I - s. F o r  in the  pa r t i t i on  {t - iO} the  s u c c e s s o r  to  t - (l - s )O on the  r ight  is, 

s ince  I - s < q, ,  t - (l - s + q,_,)O. This  po in t  c a n n o t  lie b e t w e e n  - lO and  - l '  O 

so long as  [ Iq ._101l>( l  + ~ ) l l q ,  o l [ > l l q ° o l l + l l s o  + t l l .  (The  l a t t e r  is t rue  when  

6 < c b e c a u s e  IIq°-,O If-Ilq.O 1[ -> ]lcl.+,o I[--> c /q .+ ,  > c l lq ,  OI[). A n y  o t h e r  po in t  

t - jO b e t w e e n  - lO and  - I' 0 w o u l d  l ead  to  a sma l l e r  va lue  of  e,  as  a b o v e .  

F ina l l y ,  s u p p o s e  l < s. H e r e  the  on ly  p o s s i b i l i t y  is l = u b e c a u s e  all o t h e r  

po in t s  o f / ,  s ave  the  one  on the  fa r  r ight ,  h a v e  l >_- q,_~. H e r e  we see  t he re  a re  

two  poss ib i l i t i e s  fo r  po in t s  b e t w e e n  - u O  and  - ( u  + q , - O 0 .  N a m e l y ,  t -  

( u + q . - s + q , _ , ) O  and  t - ( u - s + q .  ,)0. N o t i c e  tha t  u + q . - s + q , _ , > u  

and  u - s  + q . _ , > u .  

Col l ec t i ng  r e su l t s  we have  f o u n d  the re  is on ly  one  p o s s i b i l i t y  fo r  t - j O E  I in 

wh ich  ] is no t  I - s  w h e r e  - 1 0 E l .  Th is  o c c u r s  w h e n  u < s  and  is ] =  

u + q,  - s + q._, > u. I t  is now an e a s y  m a t t e r  to  c o m p u t e  the  m i n i m u m  va lue  

of  p such  tha t  - p 0 E I  or  t - p O E I .  If  u - - - s ,  it is p = u - s  un le s s  u_-> 

s + q,_2. In  the  l a t t e r  c a se  we  are  in ca se  (B) and  p = u - s + a , q ,  , - q ,  < 

u - s. F ina l l y ,  if u < s, we are  in ca se  (A),  and  the  on ly  p o s s i b l e  c o m p e t i t o r  is 

u + (a .  + 1)q,_, - q,  - s. S ince  (a,. + l )q ._ l  - q.  - s = q,  , - q , - 2 -  s ->__ 

q.-3 - s > 0, u is the  m i n i m u m  va lue .  This  c o m p l e t e s  the  p r o o f  of  L e m m a  4.3. 
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5. Proof of Theorems 1.3 and 1.5 

Let F be a group on generators yl, "", yr, let 0 ~ X be irrational, and let to, 

tl,..',t~ be a partition as in Section 1. We define [: X---~ F as usual. If rr is a 

finite dimensional unitary representation of F, let ~= be the Hilbert space of ,r. 

By Lemma 1' of [5], if there exists x E X such that 

(5.1) lim 1 , , -~  ~ ~-(y '"÷~'(x))  = o 
r l = l  

fails to hold uniformly in k, then there exists a nontrivial measurable function 

F,~, F~: X---> ~,~, which satisfies the equation 

(5.2) F~(x + O) = [ (x )F~(x ) .  

Under the hypotheses of Theorem 1.3 (or Theorem 1.8), F~ must be essentially 

constant. Thus, if ~- is irreducible and nontrivial, F~ = 0, and (5.2) has no 

nontrivial solution. That is, (5.1) holds uniformly in k for all x. By Weyl 's  

criterion (F is now finite), if A C_ F 

(5.3) lim ~ ~A (f("+k'(x))= IA[ 

uniformly in k, and Theorem 1.3 is proved. 

We now prove Theorem 1.5. Let ~ = X × {e}, and let v be the normalization 

of ~ 1- (/~ = Haar measure on X × F). The "induced transformation" of 

Kakutani [2] is defined as follows: S(x,e) is the first point among T(x,e), 
T2(x, e),.., which belongs to fL Clearly S(x,e)= (x + n(x)O,e). (S,~, v) is 

measure preserving and ergodic. Let M > 0 and let N = 

n(x)+ n(Sx)+... + n(SU-'x). Then if A = {e}, 

1~ M 
n = l  

and therefore, as M---~oo, M/N---, I/]F]. On the other hand, by the ergodic 

theorem, as M ~ o0 
N 1 
M---> fo n(y)dy 

for almost all x. We conclude that 

and Theorem 1.5 is proved. 

fo ~ n(y)dy  = IF] 
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6. Proof of Theorem 1.7 

Parts of the proof  of Theorem 1.7 will only be sketched because the 

techniques are so similar to those employed in [6]. Our primary purpose in 

including any proof  has been to point out the fur ther  significance of (2.3) which 

may well be the key to the case of compact  K (infinite F) in Theorems 1.2 and 

1.8. 

Let  K , F , f ,  0, etc. be as in the first paragraph of Section 2. In addition we 

assume t , - b E Z O ,  i # j .  

For  the purposes of Theorem 1.7 it is no loss of generality to suppose f has 

no nonzero periods. For  let Xo _C X be the group of periods of f. Xo is closed 

because [ is right continuous. If Xo = X, then y~ = y2 . . . . .  3,,, and F is cyclic. 

The conclusion of Theorem 1.7 is trivial in this case. If Xo is finite, then 

X / X o  -~ X,  and by redefining f, 0, b, etc. in terms of the quotient,  we obtain a 

nonperiodic f. If the conclusion of Theorem 1.7 is true in the quotient  situation, 

it is true in the original situation. 

Let  y = { y ~ , . . . , y , } z ,  and let ~r: Y - - ~ Y  be the left shift: (try), =y,+~, 

y = {y, }. To each point x E X we associate a point wx E Y, defining w, ( n ) =  

[(x +nO). Note  that because wx÷o =trwx, W = c l o s u r e  {wxlx E X}  is o'- 

invariant. Because [ has no nonzero period, it can be shown that (a) ~-w~ = x is 

well defined on {wx Ix E X}, and (b) ~- extends to be a continuous map f rom W 

to X. Let  P = {t, - j 0  l0 < i < r - l, j E Z}. For  any x E X there is at most one 

value of n such that x + nO ~ {to," ' ,  tr-,} (because t, - t~ ~ Z0, i # j),  and such a 

value exists if and only if x E P. We list some easily verified properties of ~" (see 

[6] for  the techniques): 

(c) 7w = x  implies w ( n ) =  wx(n) whenever  x +nO~={to,"',tr-~}. 

(d) If W#Wx, and if ~ 'w=x,  then w ( n ) = y H  if x + n O = t l  ( = y r  if 

x + nO = 0). 

Property (c) implies r-~x is a singleton ( = {wx}) for  x ~ P. Proper ty  (d) implies 

z - ' x  has at most two points for  x E P. For  some i y,_, ~ y, because f has no 

periods, and if x + nO = ti, r - ' x  will have two points. 

LEMMA 6.1. I[ W~,w2EW,  and i[ rw~=rw2, then either w~(n)=w2(n) ,  

n >-0, or else w~(n) = w2(n), n < 0 .  

PROOF. Immediate f rom (c) above. 

LEMMA 6.2. For all w E W{cr'w In ~ Z} is dense in W. ((tr, W)  is a minimal 

/low.) 
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PROOF. Differs in no essential respect f rom the proof on page 4 of [6]. 

Let  Z = X x K, and define T: Z ~ Z by T(w, k) = (o'w, w (0)k). Define z, ( . )  

on W, n E Z ,  by 

w (n - 1) w (n - 2)... w (0) (n > 0) 

(6.3) z , (w)=  e (n =0) 

w(n) 'w(n + 1 ) - ' . . . w ( -  1)-' (n <0) .  

The powers of T are computed to be 

(6.4) T"(w, k) = (~r"w, z,(w )k ). 

(Compare with Section 1.) 

For  each w E  W define A(w)C_K, to be the set of k such that 

(w, k ) E  U((w, e)), where U((w',k')) denotes the orbit closure of (w',  k ' ) E  Z 

under T. To say k E A(w), is to say there exists a sequence {nj} such that 

z,~(w)---~k and o-"Jw ~ w. This together with (6.3) make it evident that if k E K 

is arbitrary 

(6.5) {k' E K I(w, k')  E G((w, k))} = A(w)k. 

In particular, A(w)A(w)C_A(w), and A(w) is a closed subsemigroup of K. 

Thus, A(w) is a closed subgroup of K. 

For  all ( w , k ) E Z  the flow (T, 6((w,k))) is minimal. Indeed, if ( w ' , k ' ) E  
6((w, k.)), there is a sequence {nj} such that T",(w', k')--*(w, k") because (tr, W) 

is minimal and K is compact  metric. By (6.3), k " =  Ak for some A EA(w) .  

Since A-~EA(w) ,  (w ,k )EG((w,  Ak)). Thus, (w , k )E~( (w ' , k ' ) ) ,  and so 

(~((w,k))CC?((w',k'))c~?((w,k)). That is, ~((w' ,k ' ) )=C((w,k) ) ,  and 

(T, G((w,k))) is minimal. 

LEMMA. 6.6. For all n E Z and w E W 

(6.7) A(o'"w) = z , (w)A(w)z,(w)- ' .  

PROOF. By (6.5) A(tr"w)z.(w) = {k I(tr"w, k) E G((~r"w, z,(w))). Apply T-" 

and the fact z - . ( o " w ) = z , ( w )  -~ to conclude z,(w)-'A(o-"w)z,(w)C_A(w). 

Now if )t E A(w), there exists by the minimality of (T, 6((w, e))) a sequence {nj} 

such that T"~(cr"w,z,(w))---~(w,A). Then T"~+"(tr"w,z,(w))---~(o'"w,A'z,(w)), 
) t ' E  A(~r"w), and so A = z,(w)-JA'z,(w).  Thus, (6.7) holds. 

In what follows we let 3~, (K)  be the space of closed subsets of K, and we 

regard A( . )  as a function, A: W ~ c ( K ) .  
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LEMMA 6.8. With notations as above, A( . )  is a continuous function. 

PROOF. Fix w E W, and suppose (w' ,  k ) E  (~((w, e)). We will prove A(w') = 

k A ( w ) k - '  (compare with (6.7)). Assuming this to be so, it is clear f rom the 

definitions that if w ;~--~ w, if (w' ,  k ',) E C'((w, e )), and if k ',--~ k' ,  then k' E A(w). 

This implies A(w')---~A(w) as w'---~w. 

To prove A ( w ' ) - - k A ( w ) k  -~, first use (6.5) as in Lemma 6.6 to prove 

k-~A(w')k _CA(w). If A ~ A(w), choose {ni} such that T",(w',k)---~(w,A) using 

minimality. Then A =/3k, where zn,(w')--*[3. Now clearly /(/3 ~ A ( w ' ) ,  and 

therefore  A = k ~(k~)k E k ~A(w')k. The lemma is proved. 

LEMMA 6.9. With notations as above, if rw = rw',  then A ( w ) =  A(w'). 

PROOF. By Lemma 6.1 either w ( n ) =  w'(n) ,  n =>0, or else w(n)  = w'(n) ,  

n < 0 .  This implies either z , (w)  = z°(w'),  n =>0, or else z , (w)  = z,(w') ,  n <0 .  

Whichever  of the two cases applies, denote  the common value by z,. We have 

by (6.7) 

(6.10) 

A(cr"w) = z ,A(w)z- , '  

A(cr"w') = z,A(w')z- , '  

either for  all n ->_ 0 or else for  all n < 0. Let  d( -,- ) be any compatible metric on 

W. Then by property (c) at the beginning of this section, lim,_~ d(o-"w, o-"w') = 

0. Letting 6 be the Hausdorff  metric on ~, (K),  the continuity of A(. ) and the 

compactness  of W imply l im ,~6(A(o-"w) ,  A(~r"w'))= 0. Then by (6.10) and 

the compactness  of K, there exists z E K such that z A ( w ) z - ' =  zA(w ' ) z - ' .  

Thus A ( w ) =  A(w'). The lemma is proved.  

If x • X, define A(x) = A(w~). By Lemma (6.9) and the continuity of A(. ) on 

W, A is continuous on X. Since r~rw = rw + 0, the function on X satisfies the 

equation 

(6.11) A(x + 0) = f ( x )A(x ) f ( x ) - ' .  

QUESTION 6.12. Let  0, F, etc. be as above. Is every  continuous solution to 

(6.11) necessarily constant? 

REMARK. Not ice  that the continuity of A implies 

yiA(ti)y~' -' <= = = yi.,A(t~)yi., ,  1 i < r, and y~A(0)yr' y ,A(0)y .  1. 

There  are two obvious instances in which the answer to (6.12) is "yes" .  If K 

is abelian, then (6.11) implies A(x + 0 ) = A ( x ) ,  all x, and constancy follows 
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f rom Kronecker ' s  theorem and continuity. Secondly,  if K is finite (K = F), 

constancy follows from continuity and the connectedness  of X. 

REMARK. Unfor tunately  the constancy proof in the case of finite K does not 

use the form of (6.11). Even with the continuity hypothesis we have been 

unsuccessful  in using (6.11) to prove constancy.  

LEMMA 6.13. With notations as above assume A(. ) is constant. Then A is a 

normal subgroup of  K, and if A ~ K, K / A  is isomorphic to X. 

PROOF. I f A ( x ) - A ,  thenby(6 .11)3 , jAy-~ =Aforl<-_j<=r.  S i n c e F i s d e n s e  

in K ,A must be normal. Let  r/: K ~ K / A  be the canonical projection. Let  

Ko = K / A .  

Recall that z , ( w ) =  w(0). Define ~r,(w)= r/z~(w), and then define 

To: W x Ko--~ W x Ko by T0(w, ko) = (~rw, ~(w)ko).  If Ao(w) is defined arlalog- 

ously to A(w), then Ao(w) = {e} for all w. (The map 7r: W x K --> W x Ko given 

by 7r(w, k ) =  (w, r/k) satisfies 7rT = ToTr, and thus Ao(w)= r / A (w )=  {e}). 

The triviality of Ao implies that for  any fixed w E W there exists for  each 

w' E W a unique element ~:(w') E Ko such that (w',  ~(w')) E (?((w, e)). We have 

~:(crw') = ~rl(w')~:(w'), w ' E  W, and ~:(.) is continuous because ~((w,e))  is 

closed. Therefore ,  by an argument like the one used in Lemma 6.9, if 

~-w' = ~-w", then ~(w')  = ~(w"). Let  fo(x) = Tlf(x), and define ~:(x) = ~(wx ). Then 

so( • ) is continuous, and 

(6.14) ~:(x + 0) = fo(X)~(x). 

In this case ]Co can have no discontinuity (because if & = r/yi, (6.14) implies 

6,~:(t~) = 6,+~:(t,), 0 _-< i < r, and 6~:(0) = 6~(0)).  Thus, r/y, = r/y~ = 3, all i,j, and 

(6.14) is 

(6.14') ~(x + 0) = 6~:(x). 

By (6.14') the map nO--->6" extends to a continuous homomorphism 

4~: X ~ Ko. Since {6"} is dense in Ko, if A ~ K, then 6 ~ 0. It follows that 

Ko ~ X / F ,  where F is a finite subgroup of X, and therefore  Ko -~ X. 

If F = K is finite, the alternative Ko ~ X is impossible, and we conclude 

A = K = F. That is, (T, Z)  is minimal. 

PROOF OF THEOREM 1.7. We will use the fact that (T, Z)  is minimal under the 

hypotheses  of Theorem 1.7. For  each A E F  define Z~ to be the set Z~ = 

{(w, A)lw E W}. Z, is open in Z. By minimality there exists an integer l -- l~ 
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such that Z = I._)I=, T ~Z~. Let  L = max~r/~. If x E X, ,t E F, there exists an 

integer j,l<=j<-_l~, such that T~(w~,e)EZ~. In particular, zj(wx)=A. But 

zj(wx)= f~(x). The theorem is proved. 

REMARK. If the answer to (6.12) were "yes" ,  and if {y,-yT'l 1 =< i,j  _-< r} also 

generate a dense subgroup of K, then the alternative Ko ~ X in Lemma 6.13 is 

impossible because necessarily then ~ in that lemma is 6 --e.  Then (T, Z)  is 

minimal. The replacement  for  Theorem i.7 is: Let  U be a neighborhood of e in 

K. There exists L such that for  every x ~ X and k ~ K there is a ], 1 =<] <= L, 

with f("(x) ~ kU. 

REMARK. It was pointed out to us by N. Markley that minimality of (T,Z) 
under the hypotheses  of Theorem 1.7 implies the minimality of (T ,Z )  for  

Z = W x K, K compact  totally disconnected,  and F a dense subgroup of K. It 

is possible to extend similarly Theorems 1.2 and 1.8. The reason for this is that 

it can be shown using Furstenberg 's  principle [1] and arguments as in [6] that 

(T, X x K,/x)  is ergodic if and only if (T, Z)  has a unique invariant probability 

measure (is "uniquely ergodic").  If K is totally disconnected,  then K is an 

inverse limit of finite groups, say K = lim~'F, with rr~ : K --~ F~ the associated 

homomorphisms.  Correspondingly,  (T, Z)  is an inverse limit of flows built up 

using f~: X ~ F,, where fo (x) = .e'er(x). The latter flows are uniquely ergodic 

under the hypotheses of either Theorem 1.2 or Theorem 1.8, because 

(T, X x  F,,/x~) is ergodic. It is easy to see that an inverse limit of uniquely 

ergodic flows is uniquely ergodic, and therefore  (T,Z) is uniquely ergodic. 

Another  application of the equivalence mentioned above implies (T, X x K, /z)  

is ergodic. 
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