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FINITE GROUP EXTENSIONS OF
IRRATIONAL ROTATIONS

BY

WILLIAM A. VEECH'

ABSTRACT

The ergodicity of certain skew products of irrational rotations of the circle
with finite groups is established with application to the construction of
“well-distributed sequence generators”’ for finite groups.

1. Introduction

Let X =[0,1) be the compact group of real numbers modulo 1, and let
0=1t,<t, <<t =1Dbe apartition of X. Given a group I" on r not necessarily
distinct generators y,, -+, v,, we define a function f: X —T by letting f(x) =1,
for . =x<t, 1=j=r. If 0 € X, we use 0 and f to define a measurable
transformation T: X xI'—- X xT,

(1.1) Tx,y)=(x+6,f(x)y).

To avoid notational complexity we have suppressed the dependence of T on 8
and f. This will generally be clear from the context. Finally, if I is finite, denote
the normalized Haar measure on X XTI by pu.

THEOREM 1.2. Assume

(@) T is «a finite group on generators 7y, ", %y,

(b) ti, -, t.-, are rational

(¢c) @is irrational and has bounded partial quotients in its continued fraction
expansion.
Then (T, X xXT',u) is ergodic.

Recall that T is ergodic if whenever A C X XTI is measurableand T™'A = A,
then u{A)=0or 1.
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Define f*: X -»T', n €Z, by
fx+(n=DO)f(x +(n—-2)8)f(x) (n>0)
f(x)= 4 e(=identity) (n =0)

fllx+nd)f '(x+(n+1)8)f'(x — ) (n <0).

The powers of T are computed to be T"(x,y)=(x +n#, f"(x)y). The next
result says that with the hypotheses of Theorem 1.2, the sequence f“’(x),
n €Z, is “well distributed” in ' for every x € X. Below Z. denotes charac-
teristic function and |- | cardinality.

THEOREM 1.3. Let the assumptions be as in Theorem 12. If A CTI and
x € X, then

LS o i A
(].4) }\}El N nzl %A(f (X))-— !F|

uniformly in k.
The following result will be a simple corollary to Theorems 1.2 and 1.3.

THeorREM 1.5. With notations and assumptions as in Theorems 1.2 and 1.3,
define n(x), x € X, to be the least integer n = 1 such that f*’(x)=e. Then

|
(1.6) f n(x)dx = |T|.
0
In the next theorem notice that the hypotheses on 6 and ¢,,---,t._, are less
restrictive.

THEOREM 1.7. Let 8 be irrational, and assume t, — €26, 0=i <j<r IfT
is finite, there exists an integer L such that for any x the sequence f"'(x),
1=n =L, contains every element of T.

ReMArRk. The hypotheses of Theorem 1.7 are too weak for the conclusion of
Theorem 1.2. For example, if T ={=1}, r=2, y,=1, y.= — 1, and if 6 has
unbounded partial quotients, there exist uncountably many t such that if ¢, = ¢,
then (a) T fails to be ergodic, and (b) (1.4) fails to exist for A ={1} and an
uncountable number of x. (See [6].) However, there is no such *“*bad’ value of ¢
which is rational, and there remains the possibility that Theorem 1.2 is true for
all irrational 0. It also may be that Theorem 1.2 is true for # having bounded
partial quotients under the assumption ¢, — ;& 7.8, i # j. This is the case for
r=2:
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THeOREM 1.8. With notations as in Theorem 1.2 assume
(a) 8 has bounded partial quotients
(b) r=2and t, ¢Z6.

Then (T, X XTI, ) is ergodic.

The conclusion of Theorem 1.3 is also true with the hypotheses of Theorem
1.8. The case r > 2 of Theorem 1.8, if true, may be rather complicated unless a
proof along different lines from ours in the case r =2 is found.

2. A criterion for ergodicity

Let K be a compact metrizable topological group, and let y,,-:+,y. € K be
elements which generate a dense subgroup, I'. Fix a partition 0 =, <t, < -+ <
t,=1 of X, and use it as in Section 1 to define f: X >TCK. If #EX is
irrational wesetup T: X X K - X X K as T(x,k)=(x + 0, f(x)k). T preserves
Haar measure on X X K, and it makes sense to ask if T is ergodic. That it is not
always so even with hypotheses (b) and (c) of Theorem 1.2, is shown by the
example X = K, y,=--- =, = 6 (consider K as an additive group here). For
then T'(x,k) = (x + 6,k + 8), and, for example, the set {(x,k)|x —k €(0,2)}is a
proper invariant set. Later in the section we will raise a question, an affirmative
answer to which would imply that this is in a sense the only counterexample.

Let A be a complete set of continuous irreducible unitary representations of
K. To each integrable function F on X X K and 7 € A we associate an
operator valued function F, on X,

2.1 F,,()C)=J'K F(x, kym(k)dk,

where dk is Haar measure on K. We note that if F, = 0 a.e. for every nontrivial
m € A, then for almost all x, F(x,-) is constant. For since A is countable it
would be true for almost all x that F.(x) =0, all nontrivial = € A. For such x,
F.(x,-) is constant by the Peter-Weyl theorem.

If F is an invariant integrable function, F(T(x, k)) = F(x,k) a.e., then the
definition of T and the fact 7 is a representation imply that F, satisfies the
equation

(2.2) F.(x +8)=m(f(x)Fr(x).

By the observation made in the preceding paragraph, if we are able to prove
(2.2) has only the trivial solution F, =0 for nontrivial 7, then F will be
constant. Now in order to prove F, =0, we claim it is enough to prove F, is
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essentially constant. For if F, = v a.e., then (2.2) implies 7w (y;)v = v, 1 =j =r.
Since I' is dense in K, w(k)v = v, k € K. That v =0 is a consequence of the
assumed nontriviality and irreducibility of .

The next two sections are devoted to proving constancy of solutions to
equations like (2.2) under the hypotheses of Theorems 1.2 and 1.8 (where I' is
finite and I' = K). In what follows we shall describe an equation related to (2.2),
whose solutions may well be constant under suitable hypotheses. If this is the
case, then all solutions to (2.2) can be described.

Assume F, is a solution to (2.2). For each x € X define a closed subgroup
L{x)CK by L(x)={k € K|7w(k)F,(x)=F,(x)}. Using (2.2) we find

2.3) Lix+0)=f(x)L(x)f(x)™".

L(-) is measurable from X to the space of closed subsets of K with the
Hausdorff topology, as it is not difficult to see.

Question 2.4, Under the hypotheses of (say} Theorem 1.2, is every
measurable solution to (2.3) essentially constant?

Suppose L(-) is a constant solution to (2.3), say L(-)=L a.e. Then
viLy3;'=L,1=j =r, and it follows that L is normal in K. In this situation it can
be shown with the hypotheses of Theorem 1.2 that y,y;' € L, all i,j.

Let ¥ be the Hilbert space of the representation 7, and let V be the linear
span of the essential range of F, in the space of linear operators on . By the
last paragraph = (y:) = w(y;) on V for all i and j. In particular, V is 7(K)
invariant. Now if h € #, Vh is a #(K) invariant subspace of . By the
irreducibility of @, Vh ={0} or Vh = 3. If it is always the first case, then
V ={0}, and F, =0 a.c. If Vi =¥ for some h, then 7 (vy,) = w(vy;), all i, j, and
w(K) is abelian. Thus dim(#)= 1. Identify # which C, and let = (y,) =
{EC({|=1). F, is now complex valued, and (2.2) becomes

2.2) F.(x +0)=(F,(x).

Therefore ¢ = exp(2winf) for some n. Define S,, S,: XXX =X XX, by
S.(x,y)=(x+6,y+n8), and let arg z, | z| = 1, be the value of the argument in
[0,27). The map o: X X K= X x X defined by o(x,k)=(x,(1/2mw)arg w(k))
satisfies oT(x, k)= S.o(x, k). Thus, (S,, X X X) is a “factor” of (T, X X K). It
is in this sense that an affirmative answer to 2.4 implies that the counterexample
at the beginning of this section is the “only” counterexample.
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ReMark. If the answer to 2.4 is “ves”, and if yiy7', 1 =4, j =1, is also a set
of generators for I', or at least for a dense subgroup of K, then L = K, and
F,.=0a.e.

REMARK. If the answer to 2.4 is “‘yes” for metrizable K, it can be shown for
arbitrary compact K that if hypotheses (b) and (c) of Theorem 1.2 are true, and
if yi,---,y, generate a dense subgroup of K, then f™(x), n €Z, is well
distributed in K for all x € X. (This means (1.4) holds, with the right side
replaced by the normalized Haar measure of A whenever A is an open set
whose topological boundary has Haar measure 0.)

3. Proof of Theorem 1.2

Let (M, d) be a separable metric space. A measurable function g: X — M will
be said to be integrable if for some m € M (and hence all m € M) the real
valued function d(g(x), m) is Lebesgue integrable. Below I will be a generic
letter for an interval, and | - | will be Lebesgue measure on X. If g is integrable,
then for almost all x € X

. 1

3.n lim 7 f d(g(x),g(y)dy =0.
1= [}

Indeed, let {m.} be a dense sequence in M, and let X' be the intersection of the

Lebesgue sets of the functions d(g(x),m.), n =1,2,---. Then [ X'| =1, and if

x € X', (3.1) holds. We omit the simple argument.

LeEmMmA 3.2. Let g: X — M be integrable, and let e, > 0. There exists 8§ >0
with the following property: If $ ={I} is a collection of intervals with
@ |Uiesl |>a and (b) |I1|< 8, I € P, then for some € § and m €M

3.3) ﬁfl dim,g(y))dy <e.

Proor. Fix € >0, and let X;, 8 >0, be the set of x € X such that if x €1
and |I|< 8, then

’;—‘f’ d(g(x),g(y)Ndy <e.

Since lims—o|X;| =1, there exists § >0 with [Xs|>1—a. Assumption (a)
implies there exists I € $ such that I N X, # . Choose any x € I N X, and let
m = g(x). Then (3.3) is true for I and m.
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Fix an irrational number 6 € X, and let 0 = ¢, <t, <--- <t, = | be a partition
of X suchthatt;— & 78, i#j. Let I be a group on generators vy,, -+, y,, and
define f: X — T as usual. We will assume now that I" acts on M by isometries. If
vy €I, m €M, ym denotes the image of m under y. We will be interested in
measurable functions g: X — M which satisfy the equation

3.4) g(x +8)=f(x)g(x).

Special cases of (3.4) are (2.2) and (2.3). If we assume I" has a fixed point m in
M, as is true in the cases of interest, then g is automatically integrable. Indeed,
¢ (x)=d(m,g(x)) satisfies ¢(x +0) = ¢p(x) a.e. by (2.2) and the I'-invariance
of d. Thus, ¢ is constant.

If we successively replace x by x + 6, x + 26, etc. in (3.4), we find

(3.4) g(x +nb)=f""(x)g(x)

(which is in fact valid for all n €Z). Recall that f”(x)=e, and f"(x)=
fx+(n—-010) f(x +(n—2)8) - f(x), n >0.

For each n =0 define a partition P, of X by P,=¢ and P, =
{t: —j0|0=j <n,0=i <r}. P, contains the discontinuities of f’, and we note
in particular that t; —nf& P,, 0 =i < r. Order the points of P, as 0 = s <s} <
e <sto <1. Wesay s} is of type i, 0=i <r, if s} =t —18 for some I

LemMmA 3.5. With notations as above suppose €,a,b,c >o0; there exists

N < such that the following statement is true foralln Z Nand 0=i <r: If P,
contains at least an points s of type i such that

b n__ _n £ -3 ] —
(3.6) n<|s,» s,|<n (I=j+1 or j—1

(let s”1=s7,_)), there exists v} € M such that

3.7) I%If: d(w g(y)dy < e (J:<t,-—2,t,-+2>>.

Proor. Choose 8 >0 in Lemma 3.2 for « =ab and ¢’ =(b/c)e. Let
N >2c/8, and suppose n = N is such that P, contains at least an points of type
i such that (3.6) is true. Let # be the corresponding set of intervals (s, s7.).



246 W. A. VEECH Israel J. Math.,

The intervals in $ may not be pairwise disjoint, but their union has measure at
least an -b/n = ab. Each I €% has |I|<2c/n < 8. Therefore, there exists
I € ¢, v €M such that (3.3) holds (for £’). I has the form (s}-,, s}.)) = I with
st =t —10. By (3.6) I contains the interval L = (s} — b/n, s} + b/n). Note that
L +10 =17, and f* is constant on L. Letting v7 = f(s7)v, (3.4"), the group
invariance of d, and (3.3) imply

1
’—J-’f] d(v7, g(y)dy

=1

JL d(v,g(y)dy

|L|
ssij

C [
<E£ =€

The lemma is proved.

LemMMA 3.8. Assume d(m,m’)=1, m# m', and otherwise let assumptions
be as above. Given A <= suppose {n.} is an increasing sequence of integers
such that ni., = An, for all k. Suppose there exists i, 0=i<r, and a,b,c >0
such that for each k, P,, contains at least an points of type i such that (3.6) is
true. There exists v € M such that

3.9 lim IIIJ’ d(v,g(y)dy =0.

lll—'

ProoF. By Lemma 3.5 there exists a sequence v = v € M such that if
Jo=({t—bln,t; +bln)

(3.10) fim 1 [, 4ty =0
) using the inequality |Ji | = A|Ji|:

k+1

We estimate d (v}, v}

d(v,, kH)leH' J; d(l)., U”')d)’

|Jk1+ll , {d(U‘:,g(y))-}-d(g(y), k+1)dy

=

>

A

|L d(o*, g(y)dy +|-]1—| d(g(y), v**")dy.

Ji 1

-~
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It follows from (3.10) that limi_.d(v% v5*")y=0. By our assumption on d,
v% = v4"" for all large k. Let v be this common value. We will prove (3.9) holds.
It is enough by symmetry to prove

t+B

.1 -
(.11 hmg ]~ d@egl)dy=0.
B >0

To this end, fix 8 >0 and choose n, such that b/n.. <8 = b/n,. Then

L e 2
EL d(v,g(y))dy =10 L d(v,g(y))dy

and the right-hand side tends to 0 as k = k(8) tends to «. The lemma is proved.

LemMMA 3.12. Assumed(m,m’')=1, m# m’. Suppose A < and {n.} is an
increasing sequence of integers such that ni., = An, for all k. If there exist
b,c >0 such that for all k every point s’ of P, satisfies (3.6), then any
measurable solution to (3.4) is essentially constant.

Proor. By Lemma 3.8 there exists for each i, 0 =i <r, an element v; EM
such that (3.9) holds with v = v. Fix £ > 0 (to be specified later) and let § > 0 be
such that if 0=i<r, and if t, €I and |I|< 3§, then

1
m ’ d(v,g(y)dy <e.

Assume k so large that n, >2c¢/8. For any j, 0=j=rn,— 1 write sj*=1 —10
for some i and I. Define w; = f(t; — 16) 'v.. Let I; be the interval (sf*,, s%,). If
J =I; +16, then because f* is constant on I, and because |J|<2c/n <8,

l

| ]f d(w, g (y)dy

(3.13) =ﬁ L d(vi, g(y))dy

I~

< €.



248 W. A. VEECH Israel J. Math.,

Now we estimate d(wj, w;.), using the fact that
2¢ 2¢
lLIé;lL— N L, II,-+||§—b—l|I,~ Nl

1

d(wj’wj+|)=|1j—nlj+—l| - d(wiji-f-l)dy
(3.14)
2¢ (1 1
=== ) + N
=5 (], donnar ez ], domon|
4c
<3 €.

Now take € < b/dc. We have d(w;, w;.;) <1 for all j, and therefore w,=w,=
---, Denote the common value by w. By (3.13) {y |d(w, g(y)) = £ '’} has measure
at most 2¢ 2. Letting ¢ — 0 we see that g is essentially constant.

Proor or THEOREM 1.2. Assume now that 6 has bounded partial quotients.
This means there is a constant g >0 such that ||n6|>B/n for n =1,2,--,
where | - | is distance to nearest integer. If t = p/q is rational, and if ||t — 16| <
1/q, then it is easy to check that ||t — 10| =1/q -||ql6| > B/q°l. From this it
follows that if ¢,,---, t,_, are rational, then every interval in the partition P, has
length at least b/n for some number b > 0. (Let Q be a common denominator
for t;, -+, t,-,. Then b = B/Q? will work.) It is a consequence of Lemma 4.1 and
the fact 8 has bounded partial quotients that there exists ¢ such that the
partition {—j# |0 =j < n} has every interval of length at most c/n. Therefore
the same is true of P,.

We are now assuming that I' is finite, and so we may take K =TI in Section 2.
Let & be the Hilbert space of = and let £ be the linear operators on #. K acts
on £ through m, and the orbit space £ /w is metrizable. Define O(x) € £/m by
O(x)=7(K)F,(x). 0(-) is measurable, and O(x + 8) = 0(x) a.e. Therefore
O(x) is constant, say O(x)= 0 a.e. 0 has the form 0 = #(K)v and we let
M = 0. M is a finite set, and since F, is essentially a function from X to M,
g(x)=F,(x) is a solution to (3.4). Placing the discrete metric on M, Lemma
3.12 applies and g is essentially constant. Theorem 1.2 is proved.

4. Proof of Theorem 1.8

The proofs of Theorems 1.2 and 1.8 are similar in spirit, but for the latter it is
necessary to look more carefully at the partitions P..
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Recall that if 8 is an irrational real number with continued fraction expansion
8 = [ao; a,, ) and convergents {p./q.}, then g..i1 = @,11gn + gu-1.

Below, when we say x € X is to the right (resp. left) of 0, we shall mean
x €(0,1) (resp. x €, 1)). Then x is to the right (left) of y if x — y is to the right
(left) of 0.

The next lemma is probably well known, but we know of no reference for it.

LeEmMa 4.1. Let 0 =[ao, a, -] and {p./q.} be as above. Given a positive
integer N define n and a, 0=a < d..1, by g. <N =¢,.. and q._ + aq, <N =
Gn-1+ (a + 1)q.. If q.0 is to the right (left) of 0, and if 0 =1 < N, then among the
numbers j0,0=<j < N,j# |, the one which is closest to 18 on its right (left) is the
one with j given by

i=l+aq. O0=I<N-g,)
“4.2) i=1=(quat(@—1q) (N-g.=!<g.-+aq.)
jzl—'(qnfl_'}’aqn) (qn71+aq" —_<—I<N).

Proor. Since 0=1j <N =gq...,if I#]]|(l -j)0|=]q.8], and equality can
hold only if | —j = *g,. Therefore, if 0= <N —q.,, j =1 + q., as claimed in
the first line of (4.2).

For any integer m the numbers (gm + Bgm )0, 0= B < an., are ||q.8 || dense
on the short interval between 0 and g..-.8. If j@ lies in this interval, then for
some B, [|(j = (gm-1+Bg- N0 <||q.0]. If 0=j <q..,, then necessarily j =
Am-1+ BGm.

Assume g,0 is to the right of 0. A similar argument works for the left. If
N ~-gq.=I1<N,and if | <j <N is such that jé is a distance less than | g.-0 |
from 16 on its right, then by the preceding paragraph j — I = g._, + Bg.-. If
B <a,—1, then || —1)8]>]g.0]+]|q.-16]. Whichever of the second two
inequalities in (4.2) [ satisfies, the value of j associated to ! satisfies ||(j — )8 || =
1.0 1| + | @18 ||, with j@ on the right of {6 and strict inequality unless @ = 0 and
N —-g.=1<q.-.. We conclude that if N—gq, =[<j<N, and if j@ is the
nearest neighbor to /6 on the right, then « =0 and j=1!-(g.-1—q.)
(=14 gu2+t(an = 1)qn-).

If 0=j <I<N,and if jé is a distance at most ||g._.6 | from [6 on its right,
then by the paragraph preceding the last, j =1 —(q.-,+ Bg.). Moreover, the
smallest possible distance is attained using the maximum g8 such that [ —
(gn-1+ Bg.) = 0. In the interval N — g, =[ <N, this value is 8 =a or a — 1
according to (4.2), assuming « =1 in the a — 1 case. The remaining case is
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a=0, N—q.=1<q._.. Here there is no value j, 0=j <[, such that
G =6l =]lg.-s6]. If 0=j <N, if j6 is on the right of I, and if |(j — 8] <
2/ gn-16]), then 1G =18 = — (g~ g.) = DO <||g.8]. Since
[i=14+qu-1—qu|<qn if jZ0 and 0=1<q,_\, j =! —(¢s-1— qn). This com-
pletes the proof of the lemma.

REMARK. Assume 6§ has bounded partial quotients.Let||l8 || = c/I,l = 1. The
largest possible value which can occur in (4.2) is

2
a8 |+ .10 1= 24,01 < =

(If|18]|= c/l, I = 1, then ¢/q. =]/ g0 || < 1/gn-: implies 1/g. < 1/c - 1/gu+:.) This
fact was needed in the proof of Theorem 1.2.

In what follows we assume 8 has bounded partial quotients. Thus, there
exists ¢ >0 such that || g8 || = c/q for all g = 1. Fix t € X such that t £ 76, set
r =2, and define t,=0, t,=t, t.=1. Let T be a group on generators v, y»,
define f: X —T as usual, and assume (M, d) is a separable metric space on
which I acts by isometries. Finally, fix a measurable function g: X — M such
that

4.3) g(x +0)=f(x)g(x).

We will prove g is essentially constant if d(m,m’)=1, m#m’, and as in
Section 3, Theorem 1.8 follows.

Define N, = gu + qn-i. Since guri=1/c - qa (¢/gn =|G:0| < 1/gqu1), Nati =
1/c - N,. Suppose for some & >0 and all n every interval of the partition Py,
(Section 3) has length at least 8|q.6 || > ¢8/q. > ¢8/N,. Then by Lemma 3.12, g
is essentially constant. Therefore, we will assume in what follows that no such
& exists.

Let &, =ming<n, ||t +58|. The smallest interval in Py, has length
min (., ]|g.0|) by Lemma 4.1. Therefore, if the smallest length is less than
8]q.81, & <1, it must be &,.

Given 8, 0< 8 < 1, let n, be the least integer such that Py, has an interval of
length less than 8| g.,0 |. Note that no = no(8)— = as § = 0. Let s, | s | < N,, be
such that e, =||t + 58 ||. We treat the case s = 0, the case s <0 being similar. By
our choice of n,, s must satisfy the inequality N,,-1 = s < N,, or more simply,
Gro-1 < § < Gugrr. Let n = no+ 5. If 8 is sufficiently small, every interval in Py,
has length at least ||s6 +1¢ . For if [|s'0 +¢ ]| =[/s6 —¢|, then |[(s —s")6 =
28]/ ga-s0 | =28(1/c)"||gn-20]- Since |s'|<Gu+gn1=qner, |5 —5'|<Gnsa. If
8 <ic’, then s = s'.
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We fix n as in the previous paragraph (assuming & <:c’). Note that s
satisfies the inequality g.-¢<$ < gn-s.

Now ¢.0 is either to the right or to the left of 0. Considerations of symmetry
make it sufficient to treat the former case. Thus, we assume below g.0 is to the
right of 0.

Fix u, 0= u < g.-,. We wish to list a string of successive elements —[# from
left to right, [ < N,, beginning with —(u + ¢,)0 and ending with the first point
— v to the right of — u# such that 0 = v < q,-,. To do this we apply Lemma
4.1, noting that when N, = ¢, + ¢,-1, a =0 in (4.2), and only the alternatives
(I + g.)0, (I — q.-08 are possible there. Of course, since we are working with
negative numbers, the successors to — 16 on the right have possible forms
—( —q.)0, —( + q._1)0. The lists (A) and (B) correspond to 0 = u < q._» and
Gn-2= U < .-, respectively. We delete 9 from —j@:

(A —(u+qu),— u,— U+ ga), =, ~ (U +(a, +1)g.-1),
—(u+(a. +1)g.1—q.)

B) —(U+qn),—u,—(U+qus), = U+ aGn1),— (U + AnGn 1 — Gr).

LEmMMA 4.3. Let 0= u < g.-y, and let I be the short interval between the first
and last points of whichever of strings (A) and (B) applies to u. If 8 >0 is
sufficiently small, then f*® is constant on I, where p is given by

i. p=u—-sif0=u—s5s<g.-
il. p=u-—-s+a.g1—qif g 2Eu—5 <gn
ili. p=uifu<s.

The proof of the lemma will be given at the end of this section. If I is in class
(A), meaning 0 = u < gq,-», then only i and iii above are possible. For class (B) it
is only i and ii, because u = ¢,-»>q.-«>s implies iii is impossible. The
possibilities (A-i), (B-i), etc., will be referred to as the type of I

Let u, I, and p be as in Lemma 4.3. Then — u + p does not depend upon u.
Since I is determined by (A) or (B), the interval I + pd depends only upon the
type of I. This is significant because, as we shall see, there is a constant « >0
such that for each of the four possible types the totality of intervals of that type
has measure at least «. Assume this to be so for the moment. Given ¢ >0,8 >0
can be chosen so that n = n(8) is large as we please. Therefore, by Lemma 3.2
if § is small, there will exist for any type some interval I of that type such that
(3.3) holds; that is, for some m € M
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4.4) l—;—lﬁ d(m,g(y)dy <e.

LetJ=I+p6, m’ =f®(x)m for any x € L. Then by (3.4), (4.4), and the group
invariance of d

4.5) '—}—'L d(m’,g(y)dy <e.

Now if I’ is any other interval of the type of I, and if p’ is associated to I’,
define m"” = f®’(x)"'m’, for any x € I'. Then (4.5) and (3.4) imply

1 "
I—I_l.[: d(m”,g(y)dy <e.

In other words, g is nearly constant, in the sense of (3.3), on every interval of
every type if § is sufficiently small.

Let I,I' be successive intervals (of possibly different types). Then I NI’ is
an interval of length [q.6 . Since I and I’ have lengths bounded by

2.6+ (an + Dl gn18 | =110+l g.-16 ]| + ]| g 26 |

< (1+¢+35)lasl,
an argument as in (3.14) shows that if m, m’ are associated to I and I’ as in
(4.4), then d(m,m’)=2(1+c "+c Pe. If ¢ is small, and if d(m,m’)=1,
m# m’, it follows that every interval of every type has the same constant
associated to it. Letting ¢ — 0, we see that g is essentially constant.

Let us now estimate the occurrences of types (A-i), (B-i), etc.

Type (A-i) occurs when u satisfies the inequalities 0=u <g,_, and 0=
U —s < g Since s < g4, there are at least g._>— g, 4= q.; such u. Every
interval of every type contains at least one segment of length ||q.-,8 | which
intersects no other interval (A) or (B). Therefore the totality of intervals of type
(A-i) measures at least g,-3]gn-||>c’.

Type (B-i) occurs when u satisfies . .= u < ¢.-,and0=u — 5 < g, ». Since
§ > q.-s, there are at least g.-s such u. The type (B-i) intervals have total
measure at least g. o|g. 6] > c®.

Type (B-ii) occurs when ¢q.»=u <g,_, and u — s Z q._». Since g._,+5 <
Gn-2+ gn-1+< g._s, this happens at least ¢, — ¢.-3 = ¢._. times. A lower bound
for the total measure of intervals of this type is g._.|q.-.10 (= c>

Finally, type (A-iii) occurs when 0 = u < g,_,and u < s. Since s > g, -, there
are at least q._¢ such u. The total measure in this case is greater than c*.
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The proof of Theorem 1.8 is complete, except for the proof of Lemma 4.3.

Proor oF LEMMA 4.3. Fix 0=u < g.-,, and let I be the interval correspond-
ing to the string, (A) or (B), associated to u. We will compute the possible
values of j such that t — j6 € I. Then, letting p be the smallest integer such that
—pB €1 or t — po € I, the function f*’ has no discontinuities on I. The lemma
will be a consequence therefore of our explicit computation.

Let — 16, —['6 be successive elements of I. We will examine the possibilities
for points t — jO between the two.

If [, = s, then one of the points t — (I —5)0, t — (I’ — 5)8 will be between the
two (remember that|s6 +t|| < 8|/q.8 |, and | .8 || is the length of the shortest of
the segments comprising I). Obviously,t — (I —s)8,t — (I’ — 5)8 are successive
elements in the partition {t —j8}. (For t —j6 to lie between the two it is
necessary, by Lemma 4.1, that either j =/ — s — g,, in which case [ > g, and
l'"’=1-q., meaning j =1'—s; or that ' — s =j — q,, meaning that I' < g,_,+ s
and hence I’ =1 + g,-, is impossible. Thus, ' =l —gq,,and j=l'"—s +q. =1 —
5). Thus, if t — j8 is to be a second point of its kind between — 16 and — 1’8, it is
necessary that it be between —1[0 and t — (I —s)0 or between —['6 and
t —(I' — 5)0. In either case, & <| s6 + ¢t |, contradicting the definition of s.

Now consider the case ' <s. Since s <g,-, | =1’ + q.. If 8§ is sufficiently
small, the only possibility for j such that ¢t —j@& is between —16 and —1'9 is
j =1 —s. For in the partition {t — i6} the successor to t — (I — 5)6 on the right is,
since l — 5 < q.,t —(l — s + g.-1)0. This point cannot lte between — [0 and -1’8
so long as [|@.-8||> (1 +8)|q.0 || >/ q.0]|+|/s6 + t|. (The latter is true when
8 < ¢ because ||g.-10]—|g.0]=|g.10]=c/qsr>cl|g.0|). Any other point
t — jO between — [0 and — '8 would lead to a smaller value of ¢, as above.

Finally, suppose [ <s. Here the only possibility is [ = u because all other
points of I, save the one on the far right, have | Z gq._,. Here we see there are
two possibilities for points between —uf and —(u + g.-,)0. Namely, t —
(u+qg.—5+q.-)0 and t —(u —s +q.-,)0. Notice that u +q, — s +g.—1>Uu
and u — s +q.-. > u.

Collecting results we have found there is only one possibility for ¢t —j@ €1 in
which j is not [ —s where —18 €I This occurs when u <s and is j =
u+q,—s+q.-.>u Itis now an easy matter to compute the minimum value
of p such that —p0€l ort—pOcl If uzs,itis p=u—s unless u =
S + gu—. In the latter case we are in case (B) and p=u—s+a.,g.-1—q. <
u — 5. Finally, if u <s, we are in case (A), and the only possible competitor is
u+(a,+1)gur—¢qn —s. Since (a. +1DG =G — S =qu1—Gu2— S =
gn-3— s >0, u is the minimum value. This completes the proof of Lemma 4.3.
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5. Proof of Theorems 1.3 and 1.5

Let I" be a group on generators vy, ", v., let § € X be irrational, and let ¢,
ti,--+,t, be a partition as in Section 1. We define f: X — T as usual. If 7 is a
finite dimensional unitary representation of I', let %, be the Hilbert space of .
By Lemma 1’ of [5], if there exists x € X such that

5.1 lim <= 2 a(f"(x)) =

fails to hold uniformly in k, then there exists a nontrivial measurable function
F,, F,: X — %., which satisfies the equation

(5.2) F.(x +8)=f(x)F,(x).

Under the hypotheses of Theorem 1.3 (or Theorem 1.8), F,, must be essentially
constant. Thus, if = is irreducible and nontrivial, F, =0, and (5.2) has no
nontrivial solution. That is, (5.1) holds uniformly in k for all x. By Weyl's
criterion (I" is now finite), if A CT

(5.3) }}g}oﬁ i Zaf"H(x)) = %1

uniformly in k, and Theorem 1.3 is proved.

We now prove Theorem 1.5. Let ) = X % {e}, and let v be the normalization
of ula (u =Haar measure on X XT). The “induced transformation” of
Kakutani [2] is defined as follows: S(x,e) is the first point among T(x,e),
T*x,e),-- which belongs to Q. Clearly S(x,e)=(x +n(x)6,e). (S,Q,v) is
measure preserving and ergodicc. Let M>0 and let N-=
n(x)+n(Sx)+--+n(S¥ 'x). Then if A ={e},

N 2 BT =
MIN

and therefore, as M — x, — 1/|T]. On the other hand, by the ergodic

theorem, as M —

N 1

v L n(y)dy
for almost all x. We conclude that

L n(y)dy =|T|

and Theorem 1.5 is proved.
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6. Proof of Theorem 1.7

Parts of the proof of Theorem 1.7 will only be sketched because the
techniques are so similar to those employed in [6]. Our primary purpose in
including any proof has been to point out the further significance of (2.3) which
may well be the key to the case of compact K (infinite I') in Theorems 1.2 and
1.8.

Let K,T,f, 80, etc. be as in the first paragraph of Section 2. In addition we
assume t;, — €726, i #].

For the purposes of Theorem 1.7 it is no loss of generality to suppose f has
no nonzero periods. For let X, C X be the group of periods of f. X, is closed
because f is right continuous. If X, = X, then v, = y,=--- = v,, and I is cyclic.
The conclusion of Theorem 1.7 is trivial in this case. If X, is finite, then
X! X=X, and by redefining f, 6, £, etc. in terms of the quotient, we obtain a
nonperiodic f. If the conclusion of Theorem 1.7 is true in the quotient situation,
it is true in the original situation.

Let Y ={y,, -, v} and let o: Y—>Y be the left shift: (oy). = Yo+,
y ={y.}. To each point x € X we associate a point w, € Y, defining w,(n) =
f(x + ng). Note that because w..o =ow,, W =closure {w.|x € X} is o-
invariant. Because f has no nonzero period, it can be shown that (a) 7w, = x is
well defined on {w, |x € X}, and (b) 7 extends to be a continuous map from W
to X.Let P={t,—j9|0=i=r—1,j€Z} For any x € X there is at most one
value of n such that x + né € {to,--,t,_,} (because t, — t; £ 26, i # j), and such a
value exists if and only if x € P. We list some easily verified properties of 7 (see
[6] for the techniques):

(c) w = x implies w(n) = w.(n) whenever x + n0& {to, -, t,_,}.
(d) If w#w, and if w=1x, then w(n)=v._., if x+n8=t (=7, if
x +né =0).

Property (c) implies 7~ 'x is a singleton ( = {w.}) for x & P. Property (d) implies
7 'x has at most two points for x € P. For some i y.-, # v: because f has no
periods, and if x + n@ =1, 77'x will have two points.

LeEmMA 6.1. If w,,w,€ W, and if tw, = 1w,, then either w,(n) = wy(n),
n =0, orelse wi(n)=wy(n), n <0.

Proor. Immediate from (c) above.

LemMA 6.2. Forallw € W{o"w |n € Z} is dense in W. (o, W) is a minimal
flow.)
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Proor. Differs in no essential respect from the proof on page 4 of [6].

Let Z = X X K, and define T: Z — Z by T(w, k) = (ow, w(0)k). Define z,(-)
on W, neZ, by

wn —Dw(n —2)---w(0) (n>0)
6.3) z.(w)= 2 e (n=0)
wn) ' wn+1D) " ew(— 1™ (n <0).

The powers of T are computed to be
(6.4) T"(w, k) =(o"w,z,(w)k).

(Compare with Section 1.)

For each we&E W define A(w)CK, to be the set of k such that
(w, k)€E O((w, e)), where O((w',k’)) denotes the orbit closure of (w',k')EZ
under T. To say k € A(w), is to say there exists a sequence {n;} such that
Zo(w)— k and o "w — w. This together with (6.3) make it evident that if k € K
is arbitrary

(6.5) {k' € K|(w, k'Y€ O(w, k))} = A(w)k.

In particular, A(w)A(w)C A(w), and A(w) is a closed subsemigroup of K.
Thus, A(w) is a closed subgroup of K.

For all (w,k)€ Z the flow (T, O((w,k))) is minimal. Indeed, if (w',k") €
O((w, k)), there is a sequence {n;} such that T"i(w’, k') — (w, k") because (o, W)
is minimal and K is compact metric. By (6.3), k"= Ak for some A € A(w).
Since A '€ A(w), (w,k)e O((w,Ak)). Thus, (w,k)EO(w’',k"), and so
O((w, k) COWw' k)Y CTO(w,k)). That is, O{w'.k'))=0(w,k)), and
(T, O((w, k))) is minimal.

LeEmmA. 6.6. Foralln €Z und w €W
(6.7) Alo"w) =z, (W)A(W)z, (w)™".

Proor. By (6.5) A(a"w)z.(w)={k [(oc"w, k) E O((c"w, z.(w))). Apply T™"
and the fact z_.(c"w)=2z,(w)™" to conclude z,(w)'A(c"w)z.(w)C A(w).
Now if A € A(w), there exists by the minimality of (T, O((w, ¢))) a sequence {n;}
such that T (0w, z,(w))— (w,A). Then T (a"w, z.(w))—= ("W, X'z, (W)),
A € A(g"w), and s0 A = z,(w)'A’z,(w). Thus, (6.7) holds.

In what follows we let ?.(K) be the space of closed subsets of K, and we
regard A(-) as a function, A: W — 2.(K).
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Lemma 6.8. With notations as above, A(-) is a continuous function.

Proor. Fix w € W, and suppose (w', k)€ O((w, ¢)). We will prove A(w') =
kA(w)k™" (compare with (6.7)). Assuming this to be so, it is clear from the
definitions that if w,— w, if (w,, k.)€ O((w,e)),and if k,— k', then k' € A(w).
This implies A(w')—> A(w) as w’' —w.

To prove A(w')=kA(w)k™', first use (6.5) as in Lemma 6.6 to prove
k™'A(w)k C A(w). If A € A(w), choose {n;} such that T"(w', k)— (w, A) using
minimality. Then A = gk, where z,(w')— B. Now clearly kB € A(w'), and
therefore A = k~'(kB)k € k'A(w’')k. The lemma is proved.

LeMma 6.9. With notations as above, if Tw = 7w', then A(w)= A(w’).

Proor. By Lemma 6.1 either w(n)=w'(n), n =0, or else w(n)=w'(n),
n < 0. This implies either z,(w)=z,(w'), n 20, or else z,(w) = z,(w'), n <0.
Whichever of the two cases applies, denote the common value by z,. We have
by (6.7)

Ale™w) =z, A(w)z,'
(6.10)
Alo"w') =z, A(w")z '

either for all n =0 or else forall n < 0. Let d(-, ) be any compatible metric on
W. Then by property (c) at the beginning of this section, lim,_..d(c"w,c"w') =
0. Letting 8§ be the Hausdorff metric on ?.(K), the continuity of A(-) and the
compactness of W imply lim,_..8(A(c"w), A(c"w")) = 0. Then by (6.10) and
the compactness of K, there exists z € K such that zA(w)z™'=zA(w')z7".
Thus A(w) = A(w’). The lemma is proved.

If x € X, define A(x) = A(w,). By Lemma (6.9) and the continuity of A(-) on
W, A is continuous on X. Since row = 7w + 0, the function on X satisfies the
equation

(6.11) Alx +0) = fO)Ax)f(x)".

QuestioN 6.12. Let 6,1, etc. be as above. Is every continuous solution to
(6.11) necessarily constant?

Remark. Notice that the continuity of A implies
YAy = viaAlt)yih, 11 <r,and % A(0)y:' = v A0y

There are two obvious instances in which the answer to (6.12) is “yes”. If K
is abelian, then (6.11) implies A(x + 0) = A(x), all x, and constancy follows
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from Kronecker’s theorem and continuity. Secondly, if K is finite (K =T),
constancy follows from continuity and the connectedness of X.

Remark. Unfortunately the constancy proof in the case of finite K does not
use the form of (6.11). Even with the continuity hypothesis we have been
unsuccessful in using (6.11) to prove constancy.

LemMmA 6.13.  With notations as above assume A(-) is constant. Then A is a
normal subgroup of K, and if A # K, K/A is isomorphic to X.

Proor. If A(x)=A,thenby (6.11) y;Ay;' = Afor 1 =j =r SinceT is dense
in K,A must be normal. Let n: K — K/A be the canonical projection. Let
K,= K/A.

Recall that z(w)=w(0). Define ¢(w)=nz(w), and then define
To: W X Ko— W X K, by To(w, ko) = (aw, {,(W)ke). If Ao(w) is defined analog-
ously to A(w), then A¢(w) = {e¢} for all w. (The map m: W X K - W X K, given
by w(w, k)= (w,nk) satisfies #T = Tom, and thus Ayw) =nA(w)={e}).

The triviality of A, implies that for any fixed w € W there exists for each
w’' € W aunique element £(w') € K, such that (w’, £(w')) € O((w, e)). We have
Elow')=L(w)Ew'), w & W, and £(-) is continuous because O((w,e)) is
closed. Therefore, by an argument like the one used in Lemma 6.9, if
™’ =tw" then £&(w') = £(w”). Let fo(x) = nf(x), and define £(x) = £(w,). Then
£(-) is continuous, and

(6.14) E(x +8)=fox)é(x).

In this case f, can have no discontinuity (because if 8 = v, (6.14) implies
§i€(t)=8ini€(t:),0=i <r, and §£(0) = 8,£(0)). Thus, ny; = ny; = 8, all i, ], and
(6.14) is

(6.14') E(x +0) = 8¢(x).

By (6.14') the map n#—48" extends to a continuous homomorphism
¢: X — K,. Since {§"} is dense in K,, if A# K, then §# 0. It follows that
Ko = X/F, where F is a finite subgroup of X, and therefore K, =~ X.

If ' = K is finite, the alternative K,= X is impossible, and we conclude
A=K =T, That is, (T, Z) is minimal.

Proor oF THEOREM 1.7. We will use the fact that (T, Z) is minimal under the
hypotheses of Theorem 1.7. For each A €I define Z, to be the set Z, =
{(w,A)|w € W}. Z, is open in Z. By minimality there exists an integer [ = [,
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such that Z = U!., T7Z.. Let L = max,<rl. If x € X, A €T, there exists an
integer j,1=j =1, such that T’(w,,e)E Z,. In particular, z(w,)=A. But
z;(w,) = f9x). The theorem is proved.

REMARK. If the answer to (6.12) were “yes”, and if {yy7'[1=4,j =r} also
generate a dense subgroup of K, then the alternative K,~ X in Lemma 6.13 is
impossible because necessarily then & in that lemma is § = e. Then (T, Z) is
minimal. The replacement for Theorem 1.7 is: Let U be a neighborhood of e in
K. There exists L such that forevery x € X and k €K thereisaj l=j=1L,
with f9(x) € kU.

RemaRrk. It was pointed out to us by N. Markley that minimality of (T, Z)
under the hypotheses of Theorem 1.7 implies the minimality of (T,Z) for
Z =W x K, K compact totally disconnected, and I' a dense subgroup of K. It
is possible to extend similarly Theorems 1.2 and 1.8. The reason for this is that
it can be shown using Furstenberg’s principle [1] and arguments as in [6] that
(T, X x K, u) is ergodic if and only if (T, Z) has a unique invariant probability
measure (is “uniquely ergodic”). If K is totally disconnected, then K is an
inverse limit of finite groups, say K =1im,'T', with m,: K —T, the associated
homomorphisms. Correspondingly, (T, Z) is an inverse limit of flows built up
using f.: X —=T,, where f,(x) = w.f(x). The latter flows are uniquely ergodic
under the hypotheses of either Theorem 1.2 or Theorem 1.8, because
(T, X XTI, u,) is ergodic. It is easy to see that an inverse limit of uniquely
ergodic flows is uniquely ergodic, and therefore (T, Z) is uniquely ergodic.
Another application of the equivalence mentioned above implies (T, X X K, 1)
is ergodic.

REFERENCES

1. H. Furstenberg, Strict ergodicity and transformations of the torus, Amer. J. Math. 83 (1961),
573-601.

2. S. Kakutani, Induced measure preserving transformations, Proc. Imp. Acad. Tokyo 19
(1943), 635-641.

3. Y. A. Khinchin, Continued Fractions, Univ. of Chicago Press, Chicago, Ili., 1964.

4. W. A. Veech, Application of ergodic theory to some problems of uniform distribution,
Conference on Topological Dynamics and Ergodic Theory, Lexington, Kentucky, June 1971.

5. W. A. Veech, Some questions of uniform distribution, Ann. of Math. 94 (1971), 125-138.

6. W. A. Veech, Strict ergodicity in zero dimensional dynamical systems and the Kronecker-
Weyl theorem modulo 2, Trans. Amer. Math. Soc. 140 (1969), 1-33.

DEPARTMENT OF MATHEMATICS
RICE UNIVERSITY
Houston, Texas, U.S.A.



